简单的神经网络算法,包括基本的后向传播BP算法,前向传播算法,更新权重使用的梯度下降算法,基本的框架算是有了,学习使用。
注意输入每一行数据时候在神经网络中会加入bias偏量,神经网络的层数和每层个数为自定义,搞了很久才知道输入矩阵多了一个维度,权重和后向传播更新的delta都是每列神经元之间的关系,关于s形函数暂时用了两种,分别是logistic()tanh() 效果差不多,简单的模型作为笔记学习使用。

获取源码

Github源码在这里

具体实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
def tanh(x):
return np.tanh(x)
def tanh_deriv(x):
return 1.0 - np.tanh(x) * np.tanh(x)
def logistic(x):
return 1 / (1 + np.exp(-x))
def logistic_derivative(x):
return logistic(x) * (1 - logistic(x))
class NeuralNetwork:
def __init__(self, layers, activation='tanh'):
if activation == 'logistic':
self.activation = logistic
self.activation_deriv = logistic_derivative
elif activation == 'tanh':
self.activation = tanh
self.activation_deriv = tanh_deriv
self.weights = []
for i in range(1, len(layers) - 1):
self.weights.append(
(2 * np.random.random((layers[i - 1] + 1, layers[i] + 1)) - 1) * 0.25)
self.weights.append(
(2 * np.random.random((layers[-2] + 1, layers[-1])) - 1) * 0.25)
def fit(self, X, y, learning_rate=0.2, epochs=10000):
X = np.atleast_2d(X)
temp = np.ones([X.shape[0], X.shape[1] + 1])
temp[:, 0:-1] = X # adding the bias unit to the input layer
X = temp
y = np.array(y)
for k in range(epochs):
i = np.random.randint(X.shape[0])
a = [X[i]]
for l in range(len(self.weights)): # going forward network, for each layer
a.append(self.activation(np.dot(a[l], self.weights[l])))
error = y[i] - a[-1] # Computer the error at the top layer
# For output layer, Err calculation (delta is updated error)
deltas = [error * self.activation_deriv(a[-1])]
# Staring backprobagation
for l in range(len(a) - 2, 0, -1):
deltas.append(deltas[-1].dot(self.weights[l].T)
* self.activation_deriv(a[l]))
deltas.reverse()
for i in range(len(self.weights)):
layer = np.atleast_2d(a[i])
delta = np.atleast_2d(deltas[i])
self.weights[i] += learning_rate * layer.T.dot(delta)
def predict(self, x):
x = np.array(x)
temp = np.ones(x.shape[0] + 1)
temp[0:-1] = x
a = temp
for l in range(0, len(self.weights)):
a = self.activation(np.dot(a, self.weights[l]))
return a
nn = NeuralNetwork([2, 2, 3, 1], 'tanh')
X = np.array([[0, 0], [0, 1], [1, 0], [1, 1]])
y = np.array([0, 1, 1, 0])
nn.fit(X, y)
for i in [[0, 0], [0, 1], [1, 0], [1, 1]]:
print(i, nn.predict(i))